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Abstract

We report on a novel method for solving one-dimensional moving boundary problems based
on wave digital principles. Here, we exploit multidimensional wave digital algorithms to
derive an efficient and robust algorithm for the solution of the considered problem. Our
method lets the wave digital model, on which the algorithm is based, expand according to
the size of the solution domain. The expanding model introduces new dynamical elements,
which must be properly initialized to obtain a calculable algorithm. To deal with this problem,
we make use of linear multistep methods to extrapolate the missing values. Our results show
the proposed method to indeed be capable of correctly solving a one-dimensional partial
differential equation describing a growing biological axon.

Keywords Wave digital filters - Partial differential equation - Moving boundary problem -
Numerical integration - Multidimensional

1 Introduction

Partial differential equations (PDEs) are the primary mathematical tool for describing spatio-
temporal physical phenomenon, such as electro-magnetic wave propagation (Lindell, 2005)
or heat transfer (Vaidya et al., 1913). In general, most partial differential equations can not
be solved analytically, which is why numerical solvers are necessary.

An interesting subset of differential problems is the set of moving boundary problems
also known as Stefan problems (Stefan, 1889). These problems represent expanding phys-
ical domains, which, from a mathematical perspective, implies that the solution domain is
dynamical, i.e. its boundaries result as an integral part of the solution (Zerroukat & Chatwin,
1997). Such problems occur in many research fields. Examples are the analysis of melting
and solidification problems (Tao, 1967; Alexiades, 1993) or diffusional controlled release
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problems associated with drug release (Higuchi, 1963; Lee, 2011). The solution of mov-
ing boundary problems is quite challenging, even from a numerical standpoint. Over the
years, a lot of work has been invested into the development of approximative, numerical, and
semi-analytical solution methods of which some turned out to be very accurate compared
to real-world measurements, refer to (Zerroukat & Chatwin, 1997; Tao, 1986) for a good
exposition.

In this paper, we aim to introduce a new numerical solution method based on the wave
digital concept (Fettweis, 1986). To this end, we have picked one example, where such as
problem occurs, namely the diffusion of microtubules in a spatially extending axon (McLean
& Graham, 2004). What makes this process interesting is the fact that it plays an important role
in the maturity of neural networks. From an engineering perspective, both the mathematical
and electrical modeling of this process can be used for the design of self-organizing bio-
inspired neural networks in the context of neuromorphic computing, cf. Ochs et al. (2021),
Michaelis et al. (2022), Jenderny and Ochs (2022), Singh Muralidhar et al. (2022), which
has inspired us to pick this specific problem.

Overall, this works builds on a large foundation of research oriented towards the solution
of ordinary and partial differential equations based on wave digital principles of which we
can only a list of few (Fettweis, 1986; Lawson & Guzman, 2001; Balemarthy & Bass,
1995; O’Connor, 2005; Bose & Fettweis, 2004; Fettweis, 1991, 1992, 2002; Fettweis &
Nitsche, 1991a,b; Hemetsberger & Hellfajer, 1994; Fettweis, 2006; Fettweis & Basu, 2011;
Werner et al., 2015), [29], (Bernardini et al., 2019, 2021). Our goal is to present a first
approach for dealing with one-dimensional moving boundary problems. Here, we make use
of multidimensional wave digital algorithms, which are known for their robustness, massive
parallelism, and fault-tolerance (Fettweis & Nitsche, 1991a).

The synthesis of a reference circuit constitutes the hardest part of the solution process.
In the early stages of the wave digital concept, these circuits were derived based on a com-
bination of physical considerations and circuit-theoretical intuition (Fettweis, 1992, 2002;
Erbar & Horneber, 1995; Fettweis, 1994). However, this required a strong foundation and
extensive experience in the field of circuit theory. Some circuit synthesis approaches were
later presented for example in Vollmer (2004), Vollmer (2005). Later on these approaches
were used as a basis for deriving an algorithm for the automated circuit synthesis of passive
hyperbolic partial differential equations based on a special state-space representation (Leuer
& Ochs, 2009, 2012). This paper applies the latter algorithm, while also combining numer-
ical integration methods with the wave digital concept to solve the considered biological
problem. Contrary to common approaches in literature, which utilize nonlinear time-varying
transformations to deal with the moving boundary, our approach allows for retaining the
simplicity of the baseline mathematical model.

The remainder of this paper is organized as follows. Section 2 recapitulates the considered
problem from a biological as well as a mathematical standpoint. In Sect. 3, we derive an
electrical model for the considered problem. Section4 discusses the concept of dynamic
wave digital models, which is then utilized to obtain the solutions presented in Sect. 5.
Finally, Sect. 6 summarizes this work and its main contributions.
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Fig.1 Sketch of a biological
presynaptic neuron connected to
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2 Tubulin-driven axon-growth
2.1 Biological background

Neurons or nerve cells are the primary building blocks of the human nervous systems.
In general, these cells have a wide range of responsibilities including sensing environmental
signals, processing sensory signals, and communicating information to different parts of the
body (Bullock et al., 2005). The neurons themselves are composed of many different parts,
the soma representing the cell’s main body, the nucleus containing genetic information, the
axon responsible for bridging the spatial gap between neurons, the synapse handling inter-
neuron communication, etc. A simplified biological sketch of a neuron is presented in Fig. 1.
In this work, we focus on one part of the neuron, namely the axon. In particular, we deal with
the mathematical and electrical modeling of axonal outgrowth.

During the development of the nervous system, axon-growth takes place. The axon’s
form is maintained by a cytoskeleton consisting of tubulin dimers (microtubules) (McLean
& Graham, 2004). Its growth process involves the extension of the cytoskeleton and the spatial
elongation. Here, tubulin is first produced within the cell body and then transported along
the axon (Wang et al., 1996). The latter is driven by a combination of diffusion and active
transport (Galbraith et al., 1999). The axon’s extension results from the polymerization of
tubulin at the tip of the axon (Morrison et al., 2002), where microtubules are first assembled
and then used to create the cytoskeleton, which results in axon-growth (Sayas et al., 2002).
Considering that this process takes place on a timescale of months to years, we expect some
form of tubulin degradation. Indeed, this effect was experimentally observed, where the
degradation of tubulin took place on a timescale of days and thus slowed down the growth
process (Miller & Samuels, 1997). Overall, the process of axon-growth is determined by
the combination of tubulin production (at the soma), tubulin degradation, tubulin transport
(along the axon via diffusion and active transport), and microtubule assembly (at the axon
tip) (Miller & Samuels, 1997).
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Fig.2 A mathematical view on tubulin-driven axon-growth for three different time instants with 7y < 1 < ;.
The three-dimensional cylinder approximates the axon’s geometry. We assume a steady flux of tubulin being
produced at the soma and flowing through the soma-axon interface into the axon. At the tip of the axon, whose
current position is denoted by /(¢1), microtubules are assembled to form the elongation of the axon. Under
the assumption of a homogenous flow of tubulin, we denote the concentration of tubulin at the coordinates

(z1,11) by c(z1, 11)

2.2 Mathematical modeling

A mathematical view on the biological scenario of axon-growth is depicted in Fig.2.
Here, a three-dimensional cylinder is used to approximate the axon’s geometry. Moreover,
we assume that the axon only grows straight and in the z-direction. Here, the variable £(¢)
denotes the axon’s length at the time ¢. At the soma-axon interface, see Fig.2, we assume
a steady supply of tubulin leading to a constant in-flux. At the axon tip, see £(¢1) in Fig.2,
microtubules are assembled to form the extension of the axon, so it can elongate. The axon’s
extension is represented by the cylinder with the black dashed edges. Under the assumption
that the concentration of tubulin is identical for all coordinates (x, y) at the cross-section at
z1, we refer to the concentration of tubulin at some time instant ¢; as ¢(zy, ).

The following section recapitulates the derivation of a one-dimensional PDE model for
the tubulin distribution within the cylinder based on conservation laws. This derivation
originates from the discussions of McLean and Graham (2004) and is first made for the
three-dimensional case. Reducing the three-dimensional model to one dimension follows in
a straightforward manner.

2.2.1 Conservation law

Let V, € R? and S, € R? denote the volume and enclosing surface of the three-dimensional
cylinder of Fig.?2, respectively. Furthermore, let r = [x, y, zIT be the three-dimensional
space vector. We start our derivation from the three-dimensional case, where the tubulin
concentration at some coordinate r € R3 is denoted by ¢(r, 1). Our first goal is to derive an
integral conservation law from which a partial differential equation for the tubulin distribution
can then be inferred. To this end, we assume the axon to be an isolated system and exploit the
principle of conservation of charge from physics. Here, we can draw an analogy between the
concentration of tubulin and charge density. The principle of conservation of charge states
that the change in electric charge in any volume is equal to the amount of in-flowing charge
minus the amount of out-flowing charge. In our context, we can similarly state that the change
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of tubulin within V, is equal to the flux of tubulin in and out of the axon:
D,/ clr,0)dV, = —/ Y (r, 1) ds, . )
a Sa

Here, D; denotes a partial derivative w.r.t. time, j (r, t) denotes the flux of tubulin at the coor-
dinate (r, t), and s, is the curve parametrization of S,. Equation (1) is an ideal conservation
law, as it does not consider the possibility of tubulin degradation within the axon. We can
incorporate this non-ideality by adding a degradation term,

D,f c(r,t)dVa:—f jl(r, 1)ds, — %/ c(r,1)dV,, 2)
a 2 1

a
where ¢;(r, t) is a (possibly nonlinear) function of c¢(r, ) describing the loss of tubulin
within V,, while 7; represents the exponential decay constant, which is identical for every
point € V,. Under the assumption of a smooth vector field, we can apply the divergence
theorem to rewrite the conservation law (2) as

1
Dyc(r, 1) + —a(r. 1) + Dlj(r,1)dVv, =0, 3)
Va 1

where D;. = [D,, Dy, DZ]T denotes the gradient w.r.t. the coordinate vector . Equation (3)
is the conservation law in integral form. In differential form, it reads:

1
Dic(r, 1) + —a(r. 0) + Dljr.0)=0. 4
1

Thus, we obtain a partial differential equation (PDE), whose solution provides the tubulin
distribution in V,. However, this PDE is incomplete, since we have yet to define the tubulin
flux j (7, t) and the tubulin loss function ¢;(r, t) in terms of c¢(r, ).

2.2.2 Tubulin flux and degradation

Within the axon, the flux of tubulin is either due to diffusion j4(r, t) or active transport
Ja(r, t), where the latter is meditated by transport proteins. The overall flux is given by the
superposition of both processes:

g, 1) =ga(r, 1) + ga(r, 1) . (&)

Fick’s law of diffusion is arguably the most common way of describing diffusion processes
(Paul et al., 2014). It states that the flux goes from the region of high concentration to the
region of low concentration. Moreover, the flux is said to be proportional to the spatial
derivative of the concentration:

Ja(r, 1) = =D(@)Dyc(r, 1) , (6)

where D(r) € R3*3 is the so-called diffusivity matrix, which has a spatial dependency.
The active transport of tubulin j,(r, t) is assumed to be proportional to the local tubulin
concentration:

ja(Ta t) = Va(T)C(T'» t) ’ (7)

where v, () denotes the local transport velocity of tubulin. Inserting both definitions (6) and
(7) into (5) yields

J(r, 1) =[va(r) = D()Dyle(r, 1) . ®)
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Thus, we have now defined the tubulin flux j(7, t) in terms of the tubulin concentration
c(r,t).

Regarding the tubulin degradation, we adopt the tubulin loss model from McLean and
Graham (2004), which states that tubulin degradation is proportional to its local concentration,
ie. ci(r,t) = c(r,t). If we briefly assume a closed system (no tubulin entering or exiting
the axon), then the considered form of tubulin loss implies that tubulin locally decays to 1/e
of its initial value after an elapsed time of 7}, i.e. c(z, fo) ~ e ! c(z, to + T;), for some initial
time fg.

2.2.3 One-dimensional model

Since we are assuming the axon to only extend in one direction, it is sufficient to work with
a one-dimensional model. Moreover, both the diffusion constant and the active transport
velocity are assumed to be constant along the axon, which leads to the special case:

r=z, D,=D,, D@r)=d, va(r)=v,. )

This leads to the one-dimensional PDE system

1
Dic(z, t) + ?lc(z, H+D.jz,t)=0, (10a)
jd(z7 Z)+ja(Z, l)=j(Z,t), (IOb)
Ja(z,t) = —dD;c(z, 1), (10c)
Ja(z, 1) = Vac(z, 1), (10d)
vglNoD,Z(t) =cl@),t) —cm, L(to) =4, (10e)

where the last equation (10e) is the growth law describing the elongation or shortening of the
axon. It states that the axon, with the length £(¢), grows or shrinks at the velocity vg, when
the tubulin concentration at the axon tip c¢(£(¢), t) exceeds or drops below some constant
threshold cy,. For the sake of completeness, we state that £( denotes the initial length of the
axon, while Np = 1 mol is a normalization constant arising from the assumption that the
tubulin concentration is measured in mol.

Looking at the PDE system (10), we see that the tubulin distrubiton plays a role in solving
the differential equation describing the growth process (10e), but that the axon length £(¢)
resulting from the solution of the latter equation does not directly appear in (10a)-(10d)
describing the tubulin distribution. Here, it is important to consider that the solution domain
of the PDE is determined by the length of the axon £(¢). In other words, the PDE is only
solved on the domain z € [0; £(¢)] at every time 7. This makes the problem a so-called
moving boundary problem, which essentially denotes a differential problem with a time-
varying solution domain (Zerroukat & Chatwin, 1997). To our utmost knowledge, no general
analytical solution exists for this equation. However, for some special cases in which the
appearing parameters are restricted to certain intervals, McLean and Graham were able to
derive analytical steady-state solutions, cf. McLean and Graham (2004). Furthermore, the
existence and uniqueness of one solution for the biologically relevant case, i.e. £(co) > 0
was proven in the same reference. Moreover, we would like to emphasize that the PDE
system is not hyperbolic and does not (generally) constitute a passive PDE system making
it incompatible with the wave digital method of solving PDEs. We will show how the PDE
system can be made hyperbolic without changing the steady-state solution. We will also
derive necessary and sufficient passivity conditions.
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2.3 Boundary conditions

Naturally, the considered PDE system can only be solved when boundary conditions are
imposed. Here, we adopt the boundary conditions proposed by McLean and Graham (2004),
which we now briefly recapitulate:

1. Thereis a steady (independent) flux of tubulin entering the axon at z = zo (Neumann-type
condition).

2. The flux of tubulin exiting the axon at z = z. is proportional to the tubulin concentration
at the tip of the axon (Robin-type condition).

Mathematically, they can be formulated as,

—pCo » =20
Jar/d —rac(z, 1), z=12ze

Dee(z, 1) = { D

where co is a typical tubulin scale, ry, is a typical tubulin production rate, r, is the tubulin
assembly rate, and jg , is the constant returned flux due to tubulin disassembly. In biology,
the latter quantity is generally not constant. To our utmost knowledge, its value stems from
a steady-state measurement and is used as an approximation (McLean & Graham, 2004;
Graham et al., 2006). Note, both assumptions at the boundaries describe diffusion processes,
which is why the boundary conditions are formulated in terms of D;c(z,t) = —jq(z,t)/d
and not j(z,t). If we formulate the conditions in terms of j(z, ), we would also impose
restrictions on the active transport of tubulin. However, the latter transport mechanism remains
unchanged at the boundaries of the considered domain.

2.4 Initial conditions

In addition to the boundary conditions, we require initial values for the starting time fg. In
the following, we use the linear initial conditions suggested in Graham et al. (2006):

—rpracoZ + rpCO[raZO + 11+ jd,r/d

Ta

c(z,10) = (12a)

These initial conditions fulfill the boundary conditions (11) but not the governing PDE (10).
The initial conditions for j(z, t) can be obtained by using (10b), which, in compact form,
reads:

J(z,10) = [Va — dD;Je(z, 1) - (12b)
The spatial derivative of ¢(z, ) at t = o can be obtained from (12a):

D.c(z,t0) = —rpco = j(z,10) = Vac(z, tp) + drpco (12¢0)

3 Electrical modeling

Solving PDEs with the wave digital concept requires first synthesizing a reference circuit,
whose dynamics coincides with the considered PDE (Fettweis & Nitsche, 1991a). In the
following, we exploit the methods discussed in Leuer and Ochs (2009), Leuer and Ochs
(2012) to synthesize a reference circuit.
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3.1 Physically-motivated hyperbolization

The wave digital concept is not equally suited to solve all types of PDEs (Fettweis & Nitsche,
1991a; Luhmann & Ochs, 20006). It excels at solving hyperbolic PDEs, because all other types
of PDEs lead to wave digital algorithms with implicit relationships, which must be resolved,
for example, through fixed-point iterations, cf. Luhmann and Ochs (2006). The implicitness
of these relationships stems from the lack of deep physical modeling allowing physical
phenomenon to propagate at infinite speeds. The considered PDE (10) is of the parabolic
type. For a deeper physical modeling (and an enhanced wave digital algorithm later on), we
now apply a hyperbolization by finding the root cause, which makes the PDE parabolic, and
rectifying it such that the PDE becomes hyperbolic. The root cause is the use of Fick’s law,
which does not consider any sort of delay in the diffusion of tubulin. This implies that even
for very small times, there exists a finite amount of diffusing tubulin, whose origin is very far
from its current position, cf. Gomez et al. (2007). This makes the diffusion process unphysical
and distorts the true qualitative nature of the considered phenomenon, as the movement of
tubulin particles is exceeding the speed of light. Thus, for a deeper physical modeling, we
will now replace Fick’s diffusion law (10c) by a modified diffusion law, namely Cattaneo’s
law Cataneo (1958):

ja(z,t) = =TiD;j(z, 1) —dD.c(z, 1) . (13)

Cattaneo’s law is the most the widely accepted generalization of Fick’s diffusion law (Gomez
et al. 2010). It introduces a sort of inertia or relaxation time with the time constant 7; into
the diffusion process allowing the particles to only move at an infinite propagation velocity,
whose value will be derived later on. Considering that our PDE system represents a general
advection—diffusion problem on the most abstract level, making use of Cattaneo’s law is
a very common and natural way of dealing with the unphysical nature of this problem. A
general theory on hyperbolic advection—diffusion problems utilizing Cattaneo’s law has been
developed in Gomez et al. (2010), and we refer the interested reader to this reference for more
details on this hyperbolization approach and its physical consequences. Note, the underlying
conservation law governing our PDE system is retained, when modifying the diffusion law,
cf. Gémez et al. (2007), Gomez et al. (2010). Also, we would like to emphasize that there is
a great amount of literature concerning the generalized hyperbolization of PDEs modeling
physical processes besides Cattaneo’s method (Fettweis & Basu, 2015; Bright & Zhang,
2009; Rubin, 1992; Chester, 1963), some more recent and/or physical than others.
With reference to (10), the hyperbolized one-dimensional PDE now reads:

D: + TL D, c(z,ty| _ |0
[dDz a4 TrD,] |:j(z, t)] - [o] ’ (14a)
T.DL(t) = c(8(t), 1) — e,  Lto) = Lo . (14b)

One important property of this hyperbolic PDE system is the fact that it degenerates to the
parabolic model in the steady-state, i.e. when all time derivatives amount to zero. This means
that its steady-state solution does not differ from the one of the parabolic model, such that the
existence and uniqueness properties of its solution (McLean & Graham, 2004) carries over
from the parabolic model. For the remainder of this section, we consider the two parts of
(14) as two independent systems. This is because the c(z, t) appears in the ODE computing
£(t), but £(¢) does not appear in the PDE computing c(z, t). Thus, we consider the ODE to
be controlled by the PDE and therefore first start by synthesizing a reference circuit for the
PDE before dealing with the ODE.
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3.2 Canonical PDE formulation

Before applying the circuit synthesis procedure, one must first rewrite (14a) in the canonical
form,

¢ 2 . .|z 0) _ 10
[LD,—}—LDZ—i—R]z—e, Z_[iz(z,z)]’ e—|:0 s (15a)
where the voltage vector e is a vector of zeros due to the absence of source terms in the left
part of (14). The relation between the current vector ¢ and the tubulin concentration and flux
is given by:

, Foc(z,t) Foj(z,t)
i1z, )= ——F——, @ tH=———. (15b)
No~/Lo voNo~/ Lo

Here, we introduce the normalization constants Fy = 1/s, Ly = 1H, and associate c(z, t)
and j(z,t) with currents. Now, the matrices L’, L%, and R are obtained by first rewriting
(14) in terms of the currents defined in (15b) and then applying a coefficient comparison:

1 0 01 F 0
o I __ —
L _LO[OV%Tr/d]’ L —VoLo[] 0}, R_LO[—Fa Fz:|7 (15¢)
1 VaVo V%
Fp=—, Fy=——, F, = . 15d
1 Tl a d z d ( )

Note, the circuit synthesis procedure only works when the PDE fulfills the conditions of
multidimensional passivity (MD passivity) (Fettweis & Basu, 2011; Leuer & Ochs, 2009,
2012). The latter is given when the circuit is MD causal (Fettweis & Basu, 2011) and the
following sufficient conditions are fulfilled by the involved matrices:

L'=11">0, L*=[L", ad R+R"'>0. (16)

We elaborate on the conditions of MD causality in Sect. 3.5.2. Now, we have decomposed
the PDE so the first two conditions are met. The third condition is generally not fulfilled,
since the matrix R is only positive-semidefinite for:

AR F, — F} <0 <= Tjv}<4d. (17)

This means that the circuit synthesis can result in an active (resistive) component. For the
sake of completeness, we would like to mention that the parameters used in this manuscript
violate this condition, which then indeed results in an active component. In this case, many
of the great properties inherent to multidimensional wave digital algorithms may or may not
hold. We will come back to this aspect in Sect. 3.6, once we complete the circuit synthesis
procedure.

3.3 Circuit realization of the axon-growth PDE

The canonical formulation (15) can now be used as a starting point the systematic circuit
synthesis. In the following, we only briefly sketch the procedure; the interested reader is
referred to Leuer and Ochs (2009), Leuer and Ochs (2012). To this end, we first rewrite (15a)
as:

[L°D, + LiD;]i=e— L\Di — Ri. (18a)
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Fig. 3 Top: Reference circuit resulting from applying the circuit synthesis procedure. Center: An alternative
reference circuit equivalent to Cy. Bottom left: Reference circuit Cp after applying simplifications by an
appropriate choice of the free parameters e, . Bottom right: Reference circuit of the axon growth law (10e)

Here, the left and right handside are termed (hyperbolic) PDE and ODE subsystem, respec-
tively:

PDE Subsystem: u = [L°D; + L{D;]i, (18b)
ODE Subsystem: u =e — L!D,i — Ri . (18¢)

To ensure the hyperbolicity of the PDE subsystem, a new term L>D; has been introduced.
The matrix L7 is a positive-semidefinite diagonal matrix consisting of free/design parameters
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with the unit of an inductance:

0 Le, =0
L? = diag(a®), o) =1" " ;e =) o, . 18d
! g(a) " {positive, else ® z‘): e (18d)

The matrix is defined such that a positive free parameter o, is introduced every time the
matrix L* has a non-zero column (or row, since it is symmetric). This ensures that a time
derivative is added to every spatial derivative introduced by the term L*D,, which guarantees
the hyperbolicity of the PDE subsystem. When no spatial derivative appears in a certain row
of the equation set, i.e. when the corresponding column fulfills L*e,, = 0, no time derivative
is required and the corresponding free parameter «y; is set to zero. Due to the introduction
of L} and because the original PDE (15) should not be modified, one must introduce a new

matrix L!, which is defined as:
Li=L"-L}. (18e)

By inserting (18e) into (18a), it can be verified that we indeed re-obtain the canonical for-
mulation (15). The newly introduced matrices are given by:

at, 0 Ly — ot 0
Li=|"12 } and LI = [ 12 } . (18f)
! [ 0 o5 ! 0 ViT/d—df,

For the sake of completeness, we now give a brief outline on the circuit synthesis procedure
proposed by Leuer and Ochs (2009), Leuer and Ochs (2012). First, to ensure MD causality,
the hyperbolic PDE subsystem (18b) undergoes a bijective coordinate transformation, cf.
Fettweis and Basu (2011). Second, the transformed PDE subsystem is realized with a known
equivalent circuit. This results in an uncoupled circuit representing the (uncoupled) PDE
subsystem. Third, an equivalent circuit for the ODE subsystem is synthesized by applying
the circuit synthesis procedure extensively described in Ochs (2012). Fourth, the circuit
realization of the ODE subsystem is used to close the external ports of the circuit representing
the PDE subsystem. This step is a direct consequence of the constitutive relationship (18a).
Finally, the previously introduced free parameters «j;,,, can be chosen in a way to eliminate
redundant electrical components and obtain a simpler circuit realization. This step can be
understood as a circuit optimization. Applying all aforementioned steps yields the reference
circuit C; in Fig.3 with the electrical parameters,

vieé, 12 = [voLo)? vias
L:, = Mol = okol” =y - vies, Li=Lo—d}, (19)
2vpviog, 2vo
2
Vv Tr V()Lo Fa
Ly=-"2"10—a%, , ns, = , ng = — , 19b
2 d 0 21 12 Vlaél s 2Fz ( )
4F F, — F?
Ry = FuLo/2, Ri==—" L. R=FLo, (190)

where the newly introduced velocity constant v; is used as a transformation variable, cf.
Fettweis and Nitsche (1991a), Leuer and Ochs (2012). In many cases, an appropriate choice
of vq can greatly simplify the resulting circuit. We elaborate on the optimal choice of this
constant in Sect. 3.5. Note, we refer to the inductors with the derivative operators D,, as
spatio-temporal inductors, because the derivative operator is given by a linear combination of
a spatial and a time derivative, cf. Fettweis and Nitsche (1991a), Luhmann and Ochs (2006),
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Leuer and Ochs (2009), Leuer and Ochs (2012):

Z

Vo
D., = V—I[D, +v,D,]. (20)

As can be seen from the definition of R; in (19), its resistance is only non-negative when
(17) is fulfilled. In other words, the active part of the PDE translates into a negative resistance
in the resulting circuit, which does not dissipate but rather supplies power to the circuit.

While the applied procedure indeed returns a valid reference circuit, the number of com-
ponents is quite large in comparison to the order of the PDE. For that reason, we now adopt
a different approach for obtaining a reference circuit. To be specific, we use the systematic
procedure only to synthesize a reference circuit for the PDE subsystem. By doing so, we
obtain the reference circuit depicted in the dashed box Fig. 3. To obtain a reference circuit for
the remaining ODE subsystem, we first explicitly write out the associated equation (18c¢):

o] [ 2fme- L nle= L) et

ri=LoF;, rn=LoF,, ry=—LoF,. (21b)

Sorting the terms and neglecting the appearing zero vector, we obtain the two mesh equations:
uyp+[r1+LiDiliy =0 and up + [r2i2 + LoDyin] = rayiy (21c)

Let us first consider the first mesh equation. We see that it corresponds to the series connection
of an inductor L1, a resistor 7y, and the port with the voltage u; in C, of Fig.3. Now, let
us consider the second mesh equation, while ignoring its right handside. This equation is
identical to first mesh equation, and we effectively obtain the same electrical components
with different parameters, which are interconnected to the port designated with the voltage
uy in Fig. 3. Contrary to the first equation, the second equation contains a source term r21;
coupling i1 to the other side of the circuit. To realize the cross-coupling, we can make use of
a current-controlled voltage source with the transresistance r2; encoding the active part of
the PDE. The reference circuit resulting from this approach is depicted in C, of Fig. 3. As can
be seen, it contains less electrical components and has a simpler structure than C; in Fig. 3.
For the remainder of this work, we make use of the alternative circuit, due to its structural
simplicity.

3.4 Circuit realization of the axon-growth ODE

In this section, we derive an equivalent circuit for the growth dynamics given in (14b). To
this end, we associate the axon’s length with a current quantity:

2 2
Fo U = Diz) = Fo
VO\/ZO VO\/ZO

Then, we substitute the definition of D,£(¢) from (10e) rewrite its right handside in terms of
the currents defined in (15b):

i3(t) = Die(t) . (22a)

. . . Vo
Ly Dyiz(t) = re[in(€(t), 1) —im], La= V*Lo , re=~LoFp. (22b)
g
As can be seen, (22b) performs an integration of its right handside, when £(¢) is known. Thus,

a possible circuit realization is given by the simple integrator circuit depicted in C4 of Fig. 3.
Here, r; denotes the transresistance of the appearing current-controlled voltage source. The
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axon’s length can be reconstructed from the current i3 flowing through the inductor L, by
applying the bijective mapping relation given in (22a).

3.5 Circuit optimization

The last step of the circuit synthesis procedure involves optimizing the circuit C; in Fig. 3 by
eliminating redundant components, which can be achieved, by an appropriate choice of the
free parameters o}, and the velocity constant v;. Here, we start by determining the maximal
propagation velocity vipax of the system, which allows us to derive a lower bound for the

velocity constant vy (Fettweis & Nitsche, 1991a; Gomez et al., 2010).

3.5.1 Maximal propagation velocity

For hyperbolic PDEs with constant coefficients of the form (18), the maximal propagation
velocity vimax can be explicitly calculated by evaluating the dispersion relation (Bilbao, 2004),

1
det(jo, L' +jk,L* + R,) =0, with R, = E[R - R", (23)
where det(-) is the determinant operator, j is the imaginary unit, and k. is the wavenumber in

z-direction. The dispersion relation provides the angular frequencies w, of the waves, which
propagate in the system, from which we can derive the associated group velocities:

1 J4d%k2 + V2

d VT

ad
- Vgr,v(kz) = Tksz(kZ) ==+

w12(k;) =+
2 3k,

VT [ad2i2 4 v2

The maximal propagation velocity is the maximal (absolute) group velocity,

A d voLok;
Iman (k) = [ ——2 (24a)

Tr N3L2K2 + F2

which turns out to be a function of k; and not a constant. A variable maximal propagation
velocity is not helpful for the upcoming circuit optimization procedure, which is why we
now make a worst case approximation. Considering that (24a) is a monotonically increasing
uneven bounded function of k., we can make a worst case approximation by calculating the
limit:

. A d
Vmax = lim Vmax (k) = [ — . (24b)
k;—00 T:

3.5.2 Simplifications

To eliminate redundancies in the circuit, we now choose our free parameters such that certain
electrical parameters become zero. Considering that our two free parameters can be chosen

@ Springer



Multidimensional Systems and Signal Processing

to eliminate the inductances in (19), we conclude that the following two choices are optimal:

2
wy=Lo and o =20 25
=Ly an @ =5 Lo . (25a)

The two design parameters have influence on the other electrical parameters of the PDE
subsystem:

1 vZ VoVvi vZ
L?Z =—|vi— 2Ly, Lél =-5 Lo, I’liz = X (25b)
2vg Vi 2Viax VoV1

The final parametric degree of freedom is given by the velocity constant v;. This constant
must fulfill the MD causality condition (Fettweis & Basu, 2011; Leuer & Ochs, 2009), which
in this case reads: v| > vmax. Furthermore, it must be chosen so the inductances sz and Lgl
are non-negative, which is a necessary condition for their passivity:

Li>0 & vi>vmy and L3 >0 & v;>0.

Since vmax > 0, the second condition is actually redundant. The non-negativity condition of
sz coincides with the condition of MD causality. Thus, we see that vi = vp,x is an optimal
choice, since it eliminates L], without violating the latter. In a final optimization step, we
eliminate the ideal transformer, appearing in C; of Fig.3, by an equivalency transformation
incorporating its turns ratio into the electrical parameters on the left side of its primary port.
The reference circuit resulting after these simplifications is depicted in C3 of Fig.3. The
equivalency of its dynamics with those of PDE system can be verified by evaluating the node
and mesh equations.

3.6 Intermediate summary and discussion

In an intermediate summary, we would like to briefly elaborate on the properties of the
synthesized circuit and its consequences on the resulting wave digital algorithm. In this
work, we have synthesized two possible electrical circuits for the hyperbolic PDE system. If
the circuit parameters are chosen in a way that fulfills the third passivity condition (17), we
recommend using C; as depicted at the top of Fig. 3 to solve the hyperbolic PDE. However,
in case this condition is not met, we recommend using circuit C3 depicted at the bottom of the
same figure due to its structural simplicity. The latter circuit contains a nonlinear and active
component and as mentioned earlier, there is no guarantee that any of the great properties
inherent to multidimensional wave digital algorithm carry over to this case. However, we can
see that all circuit elements are passive and that the active part of the PDE is reflected by one
active nonlinearity, the controlled voltage source. Thus, we can separate the circuit into a
passive subcircuit that is interconnected to an active subcircuit, a controlled voltage source.
All great properties of wave digital algorithms apply to the passive and dominant part of the
overall circuit. In this configuration, the active subcircuit excites the passive subcircuit. As
long as this excitation is bounded the passive subcircuit will react with a bounded output due
to passivity. Here, it is important to consider that passivity carries over to the wave digital
domain (Meerkotter, 2018).
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4 Wave digital modeling

The emulation of the electrical model derived in the previous section is discussed in this
section. For a better understanding of the applied methods, we begin by briefly recapitulating
the fundamentals of the wave digital concept. Then, we translate the electrical model into
the wave digital domain, which results in a compact wave digital model. Uncoiling the latter
results in the explicit wave digital model, which can be used for emulation purposes. Finally,
we introduce the concept of dynamic wave digital models, which is our main contribution.

4.1 Fundamentals

The wave digital algorithm of a given reference circuit is the result of writing out the sig-
nal relationships of the associated wave digital model in a causal manner (Fettweis, 1986;
Meerkotter, 2018). The latter can be obtained by decomposing the reference circuit into a set
of one- and multiports, which are then translated into the wave digital domain by applying
the bijective mapping relation:

a=u+ Ri, b=u—Ri, R>0. (26)

Here, a, b, and R denote the incident wave, reflected wave, and the port resistance, respectively
(Fettweis, 1986). Electrical components with differential relationships must first undergo a
discretization via numerical integration, commonly the trapezoidal rule (Fettweis, 1986;
Meerkotter, 2018). For an overview on electrical components and their translation into the
wave digital domain, the interested reader is referred to Fettweis (1986), Meerkétter (2018).
Considering that we will be working with multidimensional wave digital algorithms, we
define the discrete coordinates, zx = zo + kZ, where zo denotes the initial z-coordinate.
Thus, we have z; — zx—1 = Z forall k € N(J{, where T and Z = v T denote the temporal
and spatial step-size of the wave digital algorithm, respectively.

One aspect we would like to highlight is the fact that the trapezoidal rule, used in com-
bination with the wave digital concept, is a so-called A-stable integration method (Hairer &
Wanner, 1991). This means that asymptotic stability properties exhibited by the solution of
a differential equation carry over to the wave digital domain. Indeed, this special property of
the trapezoidal rule has been shown to play a big role in the accuracy of numerical solutions,
for example, more recently in the simulation of lumped transmission lines, cf. Zhou et al.
(2021). In our context, this is property also plays a big role, as the existence and uniqueness
of a steady-state solution is ensured by the discussions of McLean and Graham (2004). Thus,
multidimensional wave digital algorithms based on the trapezoidal rule will always have an
edge over any explicit integration method for solving this problem for two reasons:

1. The trapezoidal rule is an implicit, lossless, and the most accurate A-stable linear multi-
step method (Dahlquist, 1963; Ochs, 2001), which becomes explicit in the wave digital
domain (Fettweis, 1986). Consequently, the wave digital algorithm is fully explicit and
does not require any sort of iteration methods, which makes it efficient.

2. Explicitintegration methods can not be A-stable (Dahlquist, 1963; Ochs, 2001). Contrary
to A-stable integration methods, explicit integration methods are only numerically stable
for sufficiently small step-sizes (Dahlquist, 1963), which can make them inefficient from
a computational perspective.
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4.2 Wave digital model

Now, we discuss the translation of the circuits C3;4 in Fig. 3 into the wave digital domain.
Starting with circuit C4, the ideal controlled voltage source and the inductor translate to a
reflective wave source with the reflection coefficient —1 and a delay element (with a sign
inversion), respectively (Fettweis, 1986). The port resistance of the temporal inductor is given
by Ry =2L,/T, where T denotes the sampling period of the wave digital algorithm. Now,
we translate circuit C3, where we start by replacing the Jaumann structure with a Jaumann
adaptor. The resistor and the controlled voltage source are then replaced by the reflection
coefficient o and a reflective wave source, respectively, with:

ri —2[n%,1?R r—2R 2L5% vo 2L%
op= "Ml 2, R=vo—=2L - Y0221

) —F%> 27
r1 +2[nj,*R r2 +2R 4 vi T @7

Finally, the spatio-temporal inductors are replaced by spatio-temporal delays Z+ (Leuer &
Ochs, 2009, 2012). The delays are associated with transformed differential operators (20)
and can be interpreted as a combination of a time and a positive or negative spatial delay
(Luhmann & Ochs, 2006). To understand the reason behind two signs of the spatial delay,
one must consider that physical phenomenon can propagate in positive or negative directions
as time passes.

The compact wave digital model M is depicted in Fig. 4. It is an implicit representation
of the actual wave digital model, because it only describes the dynamics of the PDE in one
grid point. The uncoiled wave digital model, on the other hand, is an explicit interpretation
of a multidimensional wave digital model (Luhmann & Ochs, 2006), see M3 in Fig.4. Since
we are working with a one-dimensional model, consider a one-dimensional grid with spatial
step-size Z. Now, place the compact wave digital model of the previous section at every grid
point and remove all the spatio-temporal delays Z.. The ports at which the latter elements
were previously placed, are left open (as external docking ports). The uncoiled wave digital
model is obtained by interconnecting the compact wave digital models at every grid point.
In particular, every reactive-element-free model is only connected to its nearest neighbor.
The interconnection elements are the delays, which we have previously removed from the
model. These delays, however, are now pure temporal delays. This is because the spatial
delay of the compact model is now embedded into the distribution of the compact models
along the one-dimensional grid. For instance, the currents i,,(z1, t) can be inferred from the
wave quantities of the first wave digital model (the one placed at the first grid point) in M3 of
Fig.4. When interconnecting two neighboring models, it is important that every connection
exiting an external port, which previously belonged to a positive/negative spatio-temporal
delay, also connects to a port belonging to the same type of delay. Note, in this work, we do
not discuss the realization of the boundary conditions. However, our approach is based on
the discussions of Fettweis (2006).

4.3 Dynamic wave digital model

In the first section, we stated that the considered problem is of the moving boundary type. In
this section, we first start by explaining the consequences of a moving boundary w.r.t. wave
digital model and then move on to demonstrate a way of dealing with these consequences.
When an axon changes its length, the tip of the axon, which was previously at some position
L(ty) = £o, moves to some position £(¢1) = £; at the next time instant, where £( can be larger
than, smaller than, or equal to ¢;.
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Fig.4 Compact representation of the PDE subsystem in the wave digital domain (M) C3. The wave digital
model M corresponds to translating the equivalent circuit of the growth law (10e), denoted with Cy4 in Fig. 3,
to the wave digital domain. Uncoiling the compact wave digital model M leads to the uncoiled wave digital
model M3, in the case of three spatial coordinates zp with u € {1, 2, 3}
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Case 1: Growing axon

First, let us consider the case, where £ is larger than £. At the time step 7y, the right boundary
of the solution domain is at the position £¢. In the next time step, the axon grows, such that
the boundary is now at £1. Thus, the position at which the (right) boundary condition must
be applied, has changed. In terms of the wave digital model, this means that we must add a
wave digital structure to the wave digital model every time the axon grows. Furthermore, we
must shift the position of the right boundary to be at the new boundary coordinate, which
comes after the newly introduced wave digital structure. Here, we have implicitly assumed
the difference between the new axon length and the old axon length to be maximally given
by Z. Every time a wave digital structure is added, two new delays are introduced, see the
right side of Fig.5. The delays couple the wave digital model from the previous time step
to the newly added wave digital structure. To initialize the delay that the models have in
common (at the two consecutive time steps), we can simply use the wave reflected towards
the right boundary at the previous time step. However, we have no way of initializing the
other introduced delays, such that, our wave digital model becomes incalculable. To deal with
this problem, we suggest using an extrapolation technique to calculate the missing values,
which is the topic of the next section.

Case 2: Shrinking axon

Now that we have covered the first case, let us discuss the second case, where the axon
shrinks, i.e. £1 < £p. In this case, we can simply wipe the memory of all the wave digital
structures representing the axon segments that come after £;. Now, we have a wave digital
model that is fit to solve the PDE in the domain [zg; ¢1]. Essentially, this corresponds to
interpreting Fig.5 in the reverse manner, i.e. the right side is the initial wave digital model
and the left side is the wave digital model at the next time instant.

Case 3: Axon retains length

The third and final case is when the axon retains its length. This case is very trivial, as we can
simply continue using the same wave digital model to solve the PDE on the same solution
domain, until one of the other two cases comes into play.

4.4 Extrapolation technique

Extrapolation techniques are useful for approximating unknown values from known values
within the solution domain. In this section, we focus on a special type of extrapolation
techniques, namely linear multistep methods (LMS), cf. Frinken and Ochs (2002) and derive
a LMS method for approximating the initial value of the newly introduced delays. These
values depend on the tubulin concentration c(z, t) and the tubulin flux j(z, ¢). Thus, the
initialization requires extrapolating the associated currents i; and i. In the following, we
demonstrate the extrapolation for the missing current i1. The derived method can then be
analogously used to extrapolate i;.

Let us consider the current i1(z, t) associated with the tubulin concentration c(z, t) at
some point z;. We can approximate the currents at the preceding coordinates i1 (zx—,, t) by
a Taylor series expansion, while using i1 (z, #) as our pivot point:

[Zk—v — zk]?

i1(Zk—v, 1) X i1(2k, 1) + Di1 2k, Dzk—v — 2] + Dyzi1 2k, 1) T

Here, the notation D,c(zx, t) refers to the spatial derivative of ¢(z, ) evaluated at z;. Using
Zk—y — 2k = —vZ and repeating this expansion for v = {1, 2, 3} yields the linear equation
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Fig. 5 Left: Representation of the wave digital model at a time instant #,,. The multiports N, represent the
compact wave digital models after removing the spatio-temporal delays. Right: Axon-growth takes place and
a wave digital structure is added at the time instant 7, | . Adding a wave digital structure introduces three new
delays. Furthermore, the right boundary moves Ay and docks to the newly introduced wave digital structure
at 7
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system:
1-11 iz )] [i(zk-1, 1)
1 =24 | ZD:iiGx D | = |12, 1) (28)
1-39] [ £ D izt Li(-3.1
izt [ 1 =3 3] | ir(zr=1, t0)
& | 2Dt | = | =32 4572 it | - (29)
%Dzzil(zkatu)_ L 1/2 =1 1/2] [i1(zx—3. 1)

Let us now first consider the left side of the above equation. The coefficient matrix on the left
handside is a so-called Vandermonde-matrix. Its inverse can always be explicitly calculated.
Fort = t,,, the vector on the right handside contains known current values from the solution
domain. The vector of unknowns contains the boundary current i1 (zx, ) and its scaled spatial
derivatives. To calculate the value of i1 (zx, #,,), we can simply use the inverse of the coefficient
matrix at every #,,. Now, consider the right part of (28). Since we are primarily interested in
calculating i1 (zx, t,), we only require the first row of the equation system, which reads:

i1(zk, 1) = i1(zk—1, ty) — 3iy(zg—2, ty) + 3i1(2k—3, ty) . (30a)

Equation (30a) is a second-order accurate approximation for the value of 7;(z, 7). This
formula also applies when extrapolating the current i (zy, #,) associated with the tubulin
flux. Using these two values, we can approximate the missing currents,

iZi(Znst):iZ(vat)iniﬂ.l(vat)s (30b)

which we now associate with the new wave digital structure preceding the boundary, see
right side of Fig. 5. Using the half-step approximation scheme (Hetmanczyk & Ochs, 2009,
2011) and the extrapolated currents, we are now able to initialize the new delays. We can
approximate the internal states of the delay elements by knowing the corresponding currents
half a step in the past, cf. Hetmanczyk and Ochs (2009), Hetmanczyk and Ochs (2011):

a* (zp, 1) ~ RiH (2, ty — T/2), a* (zi, 1) ~ Ri* (2t — T/2) . (30c)

The extrapolated currents serve as an approximation for the unknown currents and prove to
be sufficiently good for solving the considered PDE. Once the delays are initialized, the wave
flow diagram must be recalculated before moving to the next time step. This means that two
wave flow diagram iterations must be executed every time axon-growth takes place. This
re-iteration is necessary to calculate the new value that is reflected by the right boundary,
since axon-growth has caused it to shift its position to the right.

At first glance, it may be appealing to use a higher order approximation to calculate the
missing values at the boundary. In fact, calculating the inverse of the Vandermonde-matrix
would not be difficult even if we used all n — 2 points within the solution domain. Moreover,
the inverse would only have to be calculated once at the beginning of the simulation, so it
would not lead to any decrease in the algorithmic efficiency. However, one must not forget
that the accuracy of the Taylor series expansion decreases the further we move from the pivot
point. These inaccuracies are so large such that even fourth-order approximations can lead to
instable solutions. Thus, we recommend the use of second-order or third-order approximation
schemes, when it comes to dynamic model expansion.

Finally, we would like to mention that our method only works well under the assumption
made in Sect. 4.3, namely, that the difference between boundary position at two consecutive
instants is maximally given by Z. In many physical problems, this assumption is justified
and can be ensured by choosing the sampling period 7" in a way that allows the algorithm to
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Table 1 Biological parameters
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Fig. 6 Emulation results for the biological parameters listed in table 1. Top left: Axon length over time. Top
right: tubulin concentration at soma over time. Bottom left: tubulin concentration at the axon tip over time.
Bottom right: Steady-state tubulin concentration over space

closely capture the movement of the boundary. In case the boundary growth is rapid, such
that the relative increase in the boundary position is more than Z, the only solution would
be to modify the growth law such that the boundary grows at a slower rate. Otherwise, the

extrapolation method would lead to large numerical errors possibly leading to inaccurate
solutions.

5 Emulation results and discussion

In this section, we start by comparing our emulation results to the results of previous research
(Graham et al., 2006). Here, we consider a growing axon with the initial length £y = 1 mm.
The biological parameters are listed in table 1, from which the electrical and wave digital
parameters can be calculated.
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In this scenario, the length of the axon is mainly determined by the production rate ry.
Here, it was reported that the axon reaches a steady-state axon length of £, ~ 35 mm for the
given production rate. This results in a phenomenon, which is referred to as moderate growth,
i.e. the steady-state axon length is moderately larger than its initial length. In Graham et al.
(20006), the steady-state length was shown to be slightly under 1 mm. Furthermore, the peak
axon length was approximately 4 mm. The steady-state concentrations at the two tips of the
axon were shown to have the values

cs(00) &~ 10.2 pmol and ct(00) &~ 10 umol .

Our results depicted in Fig. 6 match those from Graham et al. (2006). The peak axon length
and the steady-state length are the same. However, the tubulin concentration at the soma,
which in our case amounts to ¢s(00) &2 10.16 pmol is 0.004% smaller than in Graham et al.
(2006). Furthermore, the characteristic behavior of the axon length, the tubulin concentration
at the soma and axon tip, and the steady-state tubulin concentration are all the same.

5.1 Sensitivity analysis

Now, we exploit the wave digital concept to perform a simple sensitivity analysis, where we
(independently) vary the diffusion constant d, the active transportation velocity v,, and the
tubulin loss time constant 7;. This analysis is inspired by the sensitivity analysis performed in
Graham et al. (2006). Its main purpose is to verify the validity of our model and compare its
dynamical behavior to the parabolic model. Due to the absence of reference numerical data,
we can only give a qualitative comparison between our results and the ones from literature.
Figure 7 depicts the results of our sensitivity analysis. Here, we examine the axon-growth
dynamics for the three different growth scenarios: large (r, = 40 %), moderate (1, = 20 %),
and small (r, =2 %). Each column depicts the results of varying the three different param-
eters for one growth scenario.
Large growth
The sensitivity analysis results for the large growth scenario are depicted in the first column
of Fig. 7. Comparing these results to the ones from literature, we have found our results to be
nearly identical. Some slight differences can be observed in the top plot, where we vary d. In
Graham et al. (2006), varying the diffusion constant has no effect on the curve characteristics
or the steady-state length whatsoever. In our case, the convergence speed is effected, i.e.
lowering the diffusion constant makes the axon length converge slower. This observation
is reasonable, since we have replaced Fick’s law with Cattaneo’s law, which introduced a
time derivative and can hence slow down the speed of convergence. Varying the other two
parameters does not seem to lead to any deviations, just like in literature.
Moderate growth
The sensitivity analysis results for the moderate growth scenario is depicted in the middle
column of Fig.7. Comparing our results to the ones from literature, we can observe very
large deviations in the transient behavior. While the curve characteristics of our results match
the ones from literature, prominent points such as the peak value of the axon length are
different. The greatest deviation can be observed in the upper plot, where we varied the
diffusion constant d. In Graham et al. (2006), varying the diffusion constant did not change
the peak value of the axon length nor the convergence speed. However, it changed the steady-
state length. In our results, we can see that varying the diffusion constant changes both the
convergence behavior and the peak values of the axon length. In particular, reducing d seems
to lead to fast convergence and lower peak values. The steady-state axon length, however, does
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Fig.7 Sensitivity analysis of the axon-growth dynamics. Each column presents the axon growth dynamics for
a different tubulin production rate rp. Only one parameter is varied in every row

indeed match the one from literature in all three cases. The other two results are much closer
to the ones from literature. To be specific, both the transient behavior and the steady-state
axon length are identical.

Small growth

The last set of results for the small growth scenario is depicted in the right column of Fig. 7.
Overall, the results are very similar to the ones from literature. However, it is noteworthy to
state that the hyperbolization seems to reduce the system’s oscillation tendency. In particular,
the axon length does not seem to overshoot as much before converging to its steady-state
value, when compared to the results in Graham et al. (2006).

Discussion

Overall, our sensitivity results greatly match the ones from literature. In particular, our steady-
state solutions are identical, which is to be expected, as we have shown the hyperbolization to
not affect them. The largest discrepancies can be observed in the first row in Fig. 7, where we
have varied the diffusion constant d. Otherwise, all other results match the reference results,
which have been qualitatively justified in Graham et al. (2006) by experimental data. We
would like to mention that the authors had no access to these measurements, which is why a
direct comparison was not possible. In the following, we discuss the discrepancies appearing
in the first row of Fig. 7 from a physical and biological perspective.
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The physical perspective. As stated in Sect. 3.1, hyperbolizing the PDE using Cattaneo’s
law essentially corresponds to adding a sort of inertia, which, in our context, limits the
velocity at which tubulin particles can move within the axon. The original (parabolic) model
allows the tubulin particles to move at infinite velocities, which is unphysical. Looking at the
results of Sect. 3.5.1, we see that the relaxation constant 7;, contributes to setting a maximal
propagation velocity of tubulin, see the definition of vy,ax. Thus, we argue that our model
serves as a better approximation of the real tubulin diffusion process, which occurs at the
maximal velocity Viyax.

The biological perspective. If we briefly assume the results of the parabolic model to be
correct, then this implies that varying the diffusivity does not influence the peak axon length
for a constant tubulin production rate. However, the diffusivity of tubulin is what effectively
determines the amount of particles reaching the axon tip per unit time. Therefore, the old set
of results implies that the same amount of microtubules can reach the tip of the axon in the
same amount of time, even when the diffusivity is decreased. This statement is not reasonable,
since a lower diffusivity should also decrease the amount of microtubules reaching the axon
tip per unit time. Thus, a lower diffusivity should also lead to a lower peak axon length
according to the growth law (10e), which is something that can be observed in the first row
of Fig.7. Therefore, we argue that our model is more consistent with the modeled biological
phenomenon.

A question that remains to be answered is how the relaxation time constant 7;, introduced
by our hyperbolization approach, is to be chosen relative to the growth time constant 7.
In this work, we have chosen the former as 7; = 1s, which is in the same order as T,.
Decreasing the relaxation time constant leads to results that are more similar to the ones
from literature, which, according to our discussions, do not fully reflect the actual biological
scenario. To fit the emulation results to actual measurements, this degree of freedom must be
chosen appropriately, since it is directly correlated with the maximal velocity of the diffusion
process. As this work is mainly concerned with the electrical modeling and wave digital
emulation of the considered PDE, all discussions related to this topic are omitted.

6 Conclusion

In this work, we have dealt with the solution of moving boundary problems based on wave
digital principles. Here, we first started by describing the problem of axon-growth from a
biological as well as a mathematical standpoint. The latter is given by a one-dimensional par-
tial differential equation with a time-varying solution domain. Then, we derived an electrical
model (reference circuit) for the partial differential equation from which we obtained the
associated wave digital model. To deal with the moving boundary, we introduced the concept
of dynamic wave digital models, which can red their size according to the solution domain.
This concept was then used to solve the considered partial differential equation. Here, we
showed an astounding resemblance between our results and those from previous research,
where the mathematical model originates from.

In the future, we aim to extend this method to solve two- and three-dimensional problems.
This works will serve as a basis for deriving novel methods for dealing with higher dimen-
sional moving boundary problems. Furthermore, we aim to integrate the linear multistep
methods used in this work into the wave digital concept in order to obtain a unitary wave
digital method for dealing with general moving boundary problems.
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